How much do you know about natural gas? How about oxygen? How about the chemical reaction when these to gases meet?
Bloom Box currently produces fuel cells for corporations and companies, and does not seem to be geared towards the average homeowner or small business yet. Largely due to the high power output of 100 kW. Their
website, although nice, doesn't seem to answer all my immediate questions (Mostly upfront purchase/installation and running cost). The website does, however, provide you to a link to its facebook page and a link for residential inquiries. Keep reading for a repost of information.
The following is from Guardian.co.uk:
"The technology may be good and the product reliable. The claims at the press conference were for a technology that will eventually revolutionise power production. Solid oxide fuel cells (SOFC) are indeeed an extremely interesting way of generating small quantities of electricity for homes and offices at attractive running costs and low carbon emissions. Other developers, such as Ceres Power in the UK and Ceramic Fuel Cells in Australia/Germany, have products close to market launch and – so far – it is completely unclear whether Bloom's product is better or likely to be more attractively priced or more long-lasting.
SOFCs take a hydrocarbon fuel and split at very high temperature (perhaps 600 degrees C) into hydrogen and carbon. The carbon combines with oxygen to make CO2 and the hydrogen reacts with oxygen from air to make water. This later process causes electrons to flow through the ceramic electrolyte and generate a usable current. The crucial problem is making the cell robust, cheap and durable at the high temperatures experienced in the cell.
Ceramic Fuel Cells has numerous partnerships with large utilities around the world interested in taking its products into local markets. Its product turns about 60% of the energy value of natural gas (largely methane in the UK and Europe) into electricity, making it more efficient than all but the best combined cycle power stations. The remaining energy – residual heat – can be used to provide domestic hot water or, in theory could be used to offer space heating or energy conversion to air conditioning in summer. The carbon dioxide savings are substantial, even if grid natural gas is used. Ceramic Fuel Cells, and probably Bloom, can also use synthesis gas ('syngas') from super-heating wood in the absence of air or can even split liquid ethanol made from agricultural wastes. In theory, a SOFC can use low or zero carbon fuel and offer huge greenhouse gas savings on fossil fuel combustion. SOFCs can also be used for grid balancing. When demand is high, the grid operator will have the ability to remotely increase power output of domestic fuel cells and turn it down when the wind turbines on the hilltops are spinning fast. Ceramic Fuel Cells has successfully demonstrated this feature of its technology.
The problems with SOFCs, probably including the Bloom Box, are well known. The fuel cells burn out and have to be replaced by professional engineers. Ceramic Fuel Cells talks of the units needed to be switched every two years though the company hopes this will improve to once every four years. The cost of the units is high. Ceramic Fuel Cells has mentioned a figure of about £2,000 ($3,000+ ) for a machine that can continuously develop 2 kilowatts of electric power but I think this number is highly optimistic and the true figure is likely to be several times this level for some years to come."